An Inter-Disciplinary Resource Website to Effects on Human Electrodynamic Physiology
www.uncg.edu/~t_hunter/sound.html |
Site Map |
Patent No. 7162295 Apparatus and method for recognizing positive/negative intention using fine change of gamma wave of brainwave (Ryu, et al., Jan 9, 2007)
ASSIGNEE: Electronics and
Telecommunications Research Institute (Daejeon-shi, KR )
Abstract
Provided are an apparatus and a method for recognizing positive/negative intention using a fine change of gamma wave of a brainwave comprising the steps of detecting the brainwave from a head of a user, receiving and amplifying the brainwave detected from the step of detecting the brainwave, converting the amplified analog brainwave to one of a digital type, and recognizing the positive/negative intention of the user by detecting the fine change of the gamma wave of the brainwave in the digital type, which is transmitted from the A/D converting portion, whereby it is possible to implement an application of a real time interface and minimizes inconvenience for the user, and it requires no separate user practice.
Notes:
BACKGROUND
1. Field of the Invention
The present invention relates to a brain-computer interface technology. In particular,
the present invention relates to an apparatus and a method for recognizing positive/negative
intention using a fine change of gamma wave of a brainwave to enable recognition
of the positive/negative intention without using hands or voices, by detecting
the fine change of the gamma wave of the brainwave generated when determining
the positive/negative intention without guiding a specific brainwave that can
be easily discriminated.
2. Discussion of Related Art
A brainwave, which is a means for grasping the brain activity in a space-time
fashion, is a representative biological signal so that it has been widely used
in clinical and brain functional researches. In recent years, the brainwave
is utilized in biofeedback for improving a mental state of users through modulation
of the brainwave by means of an external stimulus, a brainwave application becomes
enlarged into a brain-computer interface (BCI) field, where human beings interface
with machine through the brainwave without having any languages or body movement
employed.
The brain-computer interface technology in accordance with the related art has
required intended practice from the users so as to have a specific brainwave
such as a discriminate .alpha.-wave appeared in purpose or to have an asymmetric
brainwave appeared between left/right hemisphere in purpose, which causes inconvenience
due to a mismatch between the intention (e.g., trying to turn off the switch)
and the action (e.g., closing eyes to amplify the .alpha.-wave) of the users,
so that it can not be regarded as true intention recognition through the brainwave.
U.S. Pat. No. 5,840,040, entitled "Encephalolexianalyzer" to Eric L., Altschuler
and Farid U. Dowla, issued in 1998, discloses a technique using mu wave as Morse
code, which is changed when thinking about an action or performing the action,
and U.S. Pat. No. 6,175,762, entitled "EEG based activation system" to Leslie
Kirkup et al, issued in 2001, discloses a technique that performs turning on/off
switch by using .alpha.-wave amplified when closing eyes, however, in these
related arts, intentional actions should also be taken to implement the intention
of the user, which causes inconvenience to the user.
Other U.S. Pat. No. 5,601,090, entitled "method and apparatus for automatically
determining somatic state" to Toshimitsu Musha, issued in 1997, discloses a
technique that analyses brainwave data of several seconds and affixes several
electrodes over the head to determine the somatic state of the user, and another
U.S. Pat. No. 5,649,061 entitled "device and method for estimating a mental
decision" to Christopher C. Smyth, issued in 1997, discloses a technique that
employs biological signals other than the brainwave. These related arts, however,
cause inconvenience to users when applied and have a difficulty in a real-time
application.
SUMMARY OF THE INVENTION
Therefore, the present invention is contrived to solve the aforementioned problems.
The present invention is directed to an apparatus and a method for recognizing
positive/negative intention using a fine change of gamma wave of a brainwave,
which can deliver natural intention through the brainwave by recognizing the
positive/negative intention (Yes/No) of the user through the brainwave without
having a specific brainwave appeared with the aid of separate user practice,
implement an application of a real time interface by utilizing the brainwave
data of 5 seconds or less, and minimize inconvenience for the user when the
user puts on a brainwave detector, by measuring the brainwave with one electrode
positioned above a left frontal area of the brain.
One aspect of the present invention is to provide an apparatus for recognizing
positive/negative intention using a fine change of gamma wave of a brainwave,
comprising: a brainwave detecting portion for detecting the brainwave from a
head of a user; a brainwave amplifying portion for amplifying the brainwave
detected from the brainwave detecting portion; an A/D converting portion for
converting the amplified brainwave received from the brainwave amplifying portion
to one of a digital type; and a recognizer for recognizing the positive/negative
intention of the user by detecting the fine change of the gamma wave of the
brainwave in the digital type, which is transmitted from the A/D converting
portion.
In a preferred embodiment of the present invention, a control portion for generating
control commands to a peripheral output device in response to the positive/negative
intention recognized in the recognizer is further comprised.
Here, the brainwave detecting portion has an electrode at a left frontal area
of the user.
Another aspect of the present invention is to provide a method for recognizing
positive/negative intention using a fine change of gamma wave of a brainwave,
comprising: a step of detecting a brainwave from a head of a user; a step of
receiving and amplifying the brainwave detected from the step of detecting the
brainwave; a step of converting the amplified analog brainwave to one of a digital
type; and a step of recognizing the positive/negative intention of the user
by detecting the fine change of the gamma wave of the brainwave in the digital
type, which is transmitted from the A/D converting portion.
In a preferred embodiment of the present invention, a step of controlling for
generating control commands to a peripheral output device in response to the
positive/negative intention recognized in the step of recognizing the positive/negative
intention is further comprised.
Here, the recognition of the positive/negative intention in the recognition
step is performed such that the fine change of an output of each frequency within
a gamma wave band is sensed. And, the gamma wave band is in the range of 32
Hz to 40 Hz.
Further, the recognition step includes the steps of receiving the brainwave
of the digital type, calculating the fine change of frequency components included
in the gamma wave band from the brainwave of the digital type; and determining
positive/negative and presence/absence of the intention in response to the fine
change. Here, the fine change of the frequency components is calculated to be
[P(first frequency)-P(second frequency)]/[P(first frequency)+P(second frequency)]
or P(first frequency)/[P(first frequency)+P(second frequency)], and the first
and the second frequencies are ones of the gamma wave band. In addition, the
determination step includes the steps of determining that the intention is present
when two peaks higher than a first predetermined threshold value are present
in the fine change of the gamma wave, and that the intention is not present
when the two peaks are not present, and determining the positive/negative intention
by comparing a second predetermined threshold value with a distance between
the two peaks.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a schematic view of an apparatus for recognizing positive/negative
intention in accordance with a preferred embodiment of the present invention;
FIG. 2 shows a graph representing a fine change of gamma wave measured in a
recognizing portion; and
FIG. 3 shows a flow chart representing an operation flow in a recognizing portion
and a control portion in accordance with a preferred embodiment of the present
invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Hereinafter, embodiments of the present invention will be described with reference
to accompanying drawings. This invention may, however, be embodied in different
forms and should not be constructed as limited to the embodiments set forth
herein. Rather, these embodiments are provided so that this disclosure will
be thorough and complete, and will fully convey the scope of the invention to
those skilled in the art.
FIG. 1 shows a schematic view of an apparatus for recognizing positive/negative
intention in accordance with a preferred embodiment of the present invention.
In FIG. 1, the apparatus for recognizing the positive/negative intention comprises
a brainwave detecting portion 11, a brainwave amplifying portion 12, an A/D
converting portion 13, a recognizer 14, and a control portion 15.
The brainwave is detected by the brainwave detecting portion 11, and an arrangement
of an electrode for detecting the brainwave is typically based on F3 of 10 20
international nomenclature, however, the arrangement can be adjusted within
the left frontal area.
A signal detected from the brainwave detecting portion 11 is amplified by the
brainwave amplifying portion 12 for amplifying the signal and is subjected to
filtering for 60 Hz alternative current, which is typically performed when the
brainwave is measured.
The amplified brainwave is converted from an analog type to a digital type using
the A/D converting portion 13. In particular, a 30 Hz low-pass filter is not
employed, which is usually used in a clinical research for extracting gamma
wave (30 Hz or more) related to higher cognitive process.
The recognizer 14 recognizes the positive/negative intention of the user by
sensing a fine change of gamma wave of the brainwave that is appeared when the
positive/negative intention is determined.
The control portion 15 generates activation commands to peripheral output devices
(e.g., monitor or input device for other machines) depending on the positive/negative
intention.
FIG. 2 shows a graph representing a fine change of gamma wave measured in the
recognizer 14. In FIG. 2, fine changes have been obtained per 31.25 ms using
an overlap of 91.7% and a time window of 0.1875 seconds. In this case, the size
of the horizontal time window and the overlap may be adjusted in accordance
with property of the brainwave of the user. Two facts can be obtained from FIG.
2, first one is that two peaks appear in the fine changes of gamma wave when
the user determines the positive/negative intention, and second one is that
the positive/negative intention can be discriminated using a distance between
the two peaks (negative: T.sub.N, positive: T.sub.Y) and a difference between
relative minimum values of the two peaks.
FIG. 3 shows a flow chart representing operation flows in the recognizing portion
and the control portion in accordance with a preferred embodiment of the present
invention.
In the first step 21, a brainwave signal of a digital type is inputted from
the A/D converting portion 13 of FIG. 1.
In the second step 22, a fine change of gamma wave is calculated with respect
to the brainwave signal of a predetermined time period (e.g., 0.1875 seconds).
Typically, the gamma wave is one that has a brainwave component of 30 Hz or
more, and is related to higher cognitive process of human being. In the present
invention, the gamma wave band is set in the range of 32 Hz to 40 Hz, however,
the range of the band can be adjusted in consideration of the brainwave property
that is changed in accordance with a subject. The amount of fine change of gamma
wave is used for extracting the fine change of frequency components included
in the gamma wave band, which may be, for example, [P(36 Hz)-P(40 Hz)]/[P(36
Hz)+P(40 Hz)] or P(36 Hz)/[P(36 Hz)+P(40 Hz)]. In this case, P represents an
output at a specific frequency, and the output may be obtained in a frequency
domain by fourier transform or by band-pass filter. The present invention can
also be applied to a method that one is skilled in the art can perform other
than the above-mentioned fine change of gamma wave. The output change in each
frequency within the gamma wave band is very fine, so that relative values between
outputs rather than the output in each frequency may be effective for the positive/negative
recognition.
In the third step 23, when there are no two peaks higher than a predetermined
value, it is determined that there is no state related to the positive/negative
intention, and a signal is continuously inputted from the A/D converting portion.
When there are two peaks having values higher than the predetermined value,
the process is progressed to the next step.
In the fourth step 24, the positive/negative intention is determined using property
of the fine change of gamma wave. For example, when a distance between the two
peaks is smaller than a predetermined threshold value (T.sub.N+T.sub.Y)/2, the
positive intention is selected. By contrast, when the distance between the two
peaks is larger than the predetermined threshold value (T.sub.N+T.sub.Y)/2,
the negative intention is selected. The above-mentioned method for determining
the positive/negative intention is only one example, and the present invention
can be applied to a typical method that one skilled in the art performs (which
is, for example, related to an adjustment of fine change of gamma wave using
baseline or artificial neural network).
In the fifth step 25, activation commands are generated to a peripheral output
device for an output in response to the determined intention when the positive/negative
intention is determined.
As such, the fine change of gamma wave is calculated in the recognizer and the
control portion to thereby determine the positive/negative intention. Alternatively,
the fourth step 24 may be performed before the third step 23. Namely, after
the positive/negative intention is determined, it may be determined whether
the determined intention is valid or not. In addition, the first to fourth steps
21 to 24 are performed in the recognizer, and the fifth step 25 is performed
in the control portion.
An apparatus and a method for recognizing a positive/negative intention using
a fine change of gamma wave of a brainwave in accordance with the present invention
have advantages that can deliver natural intention through the brainwave by
recognizing the positive/negative intention without having specific brainwaves
appeared with the aid of separate practice of the user, implement an application
of a real time interface by utilizing the brainwave data of 0.5 seconds or less,
and minimize inconvenience for the user when the user puts on the brainwave
detector, by measuring the brainwave with one electrode positioned above a left
frontal area of the brain.
In addition, the apparatus and the method for recognizing the positive/negative
intention using the fine change of gamma wave of the brainwave in accordance
with the present invention can be utilized as a basic component of "machine
controlled by thinking" by recognizing the positive/negative intention, which
is the basic intention of the human being, be applied to any machines capable
of being operated by "Yes/No", and be employed to a welfare type interface for
the handicapped not capable of using a keyboard or a mouse.
Having described specific preferred embodiments of the invention with reference
to the accompanying drawings, it will be appreciated that the present invention
is not limited to those precise embodiments, and that various changes and modifications
can be effected therein by one of ordinary skill in the art without departing
from the scope of the invention as defined by the appended claims.